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( )Mo®ing-horizon estimation MHE is an optimization-based strategy for process
monitoring and state estimation. One may ®iew MHE as an extension for Kalman
filtering for constrained and nonlinear processes. MHE, therefore, subsumes both
Kalman and extended Kalman filtering. In addition, MHE allows one to include con-
straints in the estimation problem. One can significantly impro®e the quality of state
estimates for certain problems by incorporating prior knowledge in the form of inequal-
ity constraints. Inequality constraints pro®ide a flexible tool for complementing process
knowledge. One also may use inequality constraints as a strategy for model simplifica-
tion. The ability to include constraints and nonlinear dynamics is what distinguishes
MHE from other estimation strategies. Both the practical and theoretical issues related
to MHE are discussed. Using a series of example monitoring problems, the practical
ad®antages of MHE are illustrated by demonstrating how the addition of constraints
can impro®e and simplify the process monitoring problem.

Introduction

This article discusses the dynamic-inference problem using
a state representation, also referred to as a dynamic-state es-
timation problem. Many control and monitoring systems are
based on state-space models. The state is a natural construct
when modeling chemical and biological processes, because it
compactly summarizes the past information needed to under-
stand the future behavior of the process. For example, tem-
perature, pressure, and concentrations make up the state of a
single-phase chemically reactive system. Whether full spatial
or simple functional representations such as lumping are em-
ployed depends on the accuracy required. However, rarely is
the state directly available from the process measurements,
and the state typically needs to be inferred from secondary
process measurements or a measurable subset of the state.
For example, the average molecular weight of many polymer
systems is inferred from viscosity measurements. Also, the
concentration in a simple chemically reactive system may be
inferred from the reactor temperature, a more easily mea-
sured state variable.

Correspondence concerning this article should be addressed to J. B. Rawlings.

For a subset of problems, one possesses insights in addi-
tion to physical laws and empirical correlations in the form of
inequality constraints on the process uncertainties and state
variables. For example, many process uncertainties, such as
model parameters and process disturbances, are bounded.
State variables, such as temperature and concentration, are
almost always positive and bounded. These constraints, un-
like the process uncertainties, are implicitly enforced by the
physical model of the process. However, when one considers
approximate models, this implicit enforcement may break
down and one may then need to include inequality con-
straints also on the state variables in order to reconcile the
approximate model with the process measurements. As we
demonstrate using examples, for a class of problems typically
involving bounded disturbances or approximate models, in-
equality constraints are necessary in order to obtain accurate
and physically meaningful state estimates. We focus on this
problem.

Satisfying inequality constraints is the domain of mathe-
matical programming. Consequently, any inference process
that incorporates constraints is necessarily formulated as a
mathematical program. Our interest is in the dynamic estima-
tion formulated as a mathematical program. Our interest is
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in the dynamic estimation problem. Hence, our solution em-
ploys on-line optimization. Whereas one can view Kalman fil-
tering, among many different alternatives, as an on-line opti-
mization strategy, and our proposed solution reduces to
Kalman filtering when we do not consider constraints, the
constrained estimation problem cannot escape on-line opti-
mization. While providing the ability to incorporate con-
straints, on-line optimization introduces practical difficulties.

Ž .Our proposed solution is moving horizon estimation MHE .
As we demonstrate, MHE bypasses theses issues, albeit ap-
proximately, and provides, in our opinion, a practical and
flexible strategy for constrained state estimation.

Moving-horizon estimation is not a new idea and has been
proposed by numerous researchers. Though distinct from
control, we find it best from a historical perspective to view
MHE as an offshoot of model-predictive control. The success
of employing on-line optimization in control as demonstrated

wby the industrial success of model-predictive control cf. Qin
Ž .xand Badgwell 1997, 1998 provided the initial motivation for

MHE. The first proposal of unconstrained MHE came from
Ž . Ž .Thomas 1975 and Kwon et al. 1983 , although it was Jang

Ž .et al. 1986 who first proposed unconstrained MHE as an
on-line optimization strategy. Many researchers in process
systems extended the work of Jang and coworkers. Bequette

Ž .and coworkers Bequette, 1991; Ramamurthi et al., 1993 in-
vestigated moving-horizon strategies for state estimation as a

Ž .logical extension of model-predictive control. Kim et al. 1991
Ž .and Liebman et al. 1992 investigated moving-horizon strate-

Ž .gies for nonlinear data reconciliation. Tjoa and Biegler 1991
Ž .and Albuquerque and Biegler 1996, 1997 investigated statis-

tical and numerical issues related to optimization-based non-
linear data reconciliation. Narasimhan and Harikumar
Ž .1993a,b discussed static data-reconciliation strategies incor-

Žporating constraints. Marquardt and coworkers Binder et al.,
.1998, 2000 discussed multiscale strategies for MHE and the

benefits of incorporating constraints in estimation. Bemporad
Ž .et al. 1999 discussed the application of MHE to hybrid sys-

Ž .tems. Gesthuisen and Engell 1998 discussed the application
of MHE to a pilot-scale polymerization reactor, and Russo

Ž .and Young 1999 discussed the application of MHE to an
industrial polymerization process at the Exxon Chemical
Company.

Ž .Robertson and Lee Robertson and Lee, 1995, 2002 and
Ž .Robertson et al. 1996 investigated the probabilistic inter-

Ž .pretation of constraints in estimation. Muske et al. 1993 and
Ž .Muske and Rawlings 1995 derived some preliminary condi-

tions for the stability of moving-horizon state estimation with
Ž .inequality constraints. Tyler and Morari 1996 and Tyler

Ž .1997 demonstrated how constraints may lead to instability
Ž .for nonminimum phase systems. Findeisen 1997 investi-

gated the stability and dynamic programming structure of un-
constrained, linear MHE with filtering and smoothing up-

Ž . Ž .dates. Rao and Rawlings 1998 and Rao et al. 1999a pro-
vided sufficient conditions for stability under minimal as-
sumptions in an abstract setting. The theoretical results ob-
tained from those last two articles provide the foundation for
this work.

This work provides a complementary development to our
previous theoretical results, where we addressed only the is-
sues of existence and stability. Our goal in this article is to
develop a general framework for constrained moving-horizon

estimation, with a focus on the practical aspects of the prob-
lem. A major focus is on reconciling constraints, particularly
those on state variables, with estimation theory, in particular
Kalman filtering. As we demonstrate, state constraints alter
implicitly the problem structure. The outline of the article is
as follows. We begin by introducing the constrained estima-
tion problem in the second section, and then show how mov-
ing horizon estimation arises when one considers on-line im-
plementation in the third section. Our focus then shifts and
we discuss constraints in the fourth section, in particular the
probabilistic interpretation of state constraints and the issue
of causality. Using a series of examples of varied complexity,
we illustrate the potential utility of incorporating constraints
in the inference process. We conclude with a summary of our
investigations.

Constrained State Estimation
At time T suppose our observations of the process consist

�solely of a sequence of discrete measurements y , y , . . . ,0 1
4y . For simplicity we limit our discussion to the problemTy1

where all of the sensors provide measurements simultane-
ously, though we can extend the proposed strategy mutatis
mutandis to incorporate multirate sensors. The objective at
time T is to reconstruct the evolution of the state of the pro-

� Ž . 4 � 4cess x t ; tG0 from the observations y , y , . . . , y .0 1 Ty1
We assume we can capture our physical insight of the pro-

Žcess with a finite-dimensional extensions to ‘‘infinite-dimen-
sional’’ or distributed parameter systems are possible, though

.this problem is far more complex differential algebraic equa-
tion of the form

w xF x t , x t , u t , w t , t s0, 1Ž . Ž . Ž . Ž . Ž .˙

Ž . Ž .where x ? denotes the time derivatives of the state x ? ;˙
Ž . Ž .u ? denotes measurable exogenous disturbances; and w ?

denotes unmeasurable exogenous disturbances. The distur-
Ž .bance w ? is typically modeled as a stochastic process and

may account also for modeling uncertainty. If we couple our
physical insight of the process with the measurements, then
we require a model of the process sensors. We relate the

Ž . Ž .observations y t to state x t using a model of the form

w xy t s g x t , t q ® t , 2Ž . Ž . Ž . Ž .

Ž .where measurement uncertainty is captured in the vector ® t .
Ž .One commonly assumes the vector y t is a normally dis-

Ž .tributed random variable. We stress that the vector y t in
Ž .Eq. 2 denotes the actual observation, and the vector ® t de-

Ž .notes the error between the observation y t and the pre-
Ž Ž . .dicted sensor reading g x t , t .

With the exception of linear and trivial nonlinear process
models, we need to discretize the differential algebraic equa-

Ž .tion Eq. 1 in order to perform any computation or analysis.
At this stage of our discussion, the discretization is concep-
tual. Discretization is usually performed during optimization.

ŽWhether one employs a simultaneous strategy cf. Biegler,
.1997, 1998; Bock et al. 1998 , or discretizes first using a DAE

Ž .solver cf. Ascher and Pezold 1998 is inconsequential to our
discussion, though important when one considers on-line im-
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plementation. Hereafter, we suppose that the differential al-
Ž .gebraic equation Eq. 1 is discretized with a zero-order hold

Ž . Ž .on the disturbances u ? and w ? , yielding the difference
equation

x s f x , u , w , k , 3Ž .Ž .kq1 d k k k

where the integer k denotes the discrete-time index. A typi-
cal choice is ts kDT , where DT denotes the sampling pe-
riod. The subscripts on the vectors x, u, w, and ® denote the

wvalue at the points of discretization for example, x sk
Ž .x Žx kDT . We assume also the points of discretization for ex-

.ample, t s kDT coincide with the measurement times.k
Ž .Rarely is the equation f ? in Eq. 3 available in algebraicd

Ž .form. Instead, we view the function f ? abstractly as thed
numerical solution of Eq. 1 with initial condition x . The dif-k

Ž .ference equation Eq. 3 consequently does not include ex-
plicitly algebraic constraints, even though the corresponding

Ž .differential equation Eq. 1 does.
When we couple physical insight with the process measure-

ments, we need to introduce a measure of uncertainty. The
model predictions rarely, if ever, coincide with the process
measurements. We need somehow to distribute the errors
between the model and sensor measurements. In other words,
we need to reconcile our model with the process measure-
ments. Reconciliation in our framework amounts to a trade-
off between the vectors w and ® . One may interpret w ask k k
process disturbances or model uncertainty and the vector ®k
as sensor noise. A natural framework to characterize uncer-
tainty is probability theory, where we treat the vectors wk
and ® as random variables. Our choice of the respectivek
probability distributions provides the reconciliation. A com-
mon alternative to probability theory is game theory. In game
theory one uses instead, though with often the same result,
deterministic uncertainty descriptions of the vectors w andk

Ž .® cf. Başar and Bernhard, 1995 . Another alternative wask
Ž .proposed recently by Binder et al. 1999 . Eschewing both

probability and game theory, they view the reconciliation
problem instead as the inversion of a compact operator, an
ill-posed problem. The trade-off in their framework is the
degree of regularization.

When we formulate the state-estimation problem from the
perspective of probability theory, we typically model the evo-

Žlution of the state as a discrete-time Markov process an
equivalent assumption is that the disturbances vectors w arek

.independent . As we expect, the process measurements are
correlated with the state, and quantity of interest becomes
the conditional probability density function of the state evo-

� 4 �lution x , x , . . . , x given the process measurements y ,0 1 T 0
4y , . . . , y1 Ty1

<p x , x , . . . , x y , y , . . . , y . 4Ž .Ž .0 1 T 0 1 Ty1

The optimal estimate of the state at time k, given the mea-
surements

� 4y , y , . . . , y ,0 1 Ty1

which we denote by x , is then a functional L of condi-ˆk <Ty1 T
Ž .tional probability density function Eq. 4

x , x , . . . , xˆ ˆ ˆ� 40 <Ty1 1 <Ty1 T <Ty1

<s L p x , x , . . . , x y , y , . . . , y .Ž .Ž .T 0 1 T 0 1 Ty1

A typical choice for the functional L is either an expecta-T
Ž .tion or the maximum a posteriori Bayesian MAP estimate

x , x , . . . , x gˆ ˆ ˆ� 40 <Ty1 1 <Ty1 T <Ty1

<arg max p x , x , . . . , x y , . . . , y . 5Ž .Ž .0 1 T 0 Ty1
� 4x , x , . . . , x0 1 T

In this work we focus solely on the Bayesian criterion.
Solving Eq. 5 requires an expression for the conditional

Ž .probability density function Eq. 4 . Following the develop-
Ž . Ž .ments of Cox 1964 and Jazwinski 1970 , we determine the

Ž .conditional probability density function Eq. 4 as follows:
Using the Markov property, we can express the joint proba-
bility of the state as

T y1
<p x , . . . , x s p x p x x ,Ž . Ž . Ž .Ł0 T x 0 kq1 k0

k s 0

Ž .where p x denotes our prior information concerning thex 00

initial state of the system. If we assume the measurement
noise ® is independent, then using our model of the sensork
Ž .Eq. 2 we have the relationship

T y1
<p y , . . . , y x , . . . , x s p y y g x , k .w xŽ .Ž . Ł0 Ty1 0 Ty1 ® k kk

k s 0

Applying Bayes’ rule, we obtain

<p x , x , . . . , x y , . . . , yŽ .0 1 T 0 Ty1

T y1
<A p x p y y g x , k p x x .Ž . Ž . Ž .Ž .Łx 0 ® k k kq1 k0 k

k s1

The properties of logarithms allows us to establish the follow-
ing equality

<arg max p x , x , . . . , x y , . . . , y ,Ž .0 1 T 0 Ty1
� 4x , x , . . . , x0 1 T

<sarg max log p x , x , . . . , x y , . . . , y ,Ž .0 1 T 0 Ty1
� 4x , x , . . . , x0 1 T

T y1

sarg max log p y y g x , kw xŽ .Ý ® k k
k� 4x , x , . . . , x0 1 T k s 0

<qlog p x x qlog p x .Ž .Ž .kq1 k x 00

The last equation is useful, because it allows us to transform
Ž .the problem Eq. 5 into a multistage optimization. As we

illustrate, compression is conceptually easier to address when
the problem structure is multistage.

We have succeeded in transforming the state-estimation
problem into a multistage dynamic optimization, though the
formulation still requires the specification of the probability

Ž .density functions. The probability density functions p ? and®k
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Ž .p ? are commonly chosen as normals. Even though thex0

choice is justified typically by the law of large numbers, one
chooses normals, more often than not, because they are
mathematically convenient. Evaluating the state transition

Ž < .probability density function p x x , however, requires thekq1 k
solution of functional difference equation, the discrete-time
analog of the Fokker-Planck equation, unless we make the
following simplifying assumptions:
A The disturbances w are mutually independent;k

B f x , u , w , k s f x , u , k qw .Ž . Ž .d k k k k k k

ŽIf the vector w is a normally distributed random variable,k
then we can replace assumption B with

f x , u , w , k s f x , u , k qGw ,Ž . Ž .d k k k k k k

where G is a matrix with full column rank. Under these two
assumptions, we have

<p x x s p x y f x , u , k .w xŽ .Ž .kq1 k w kq1 k kk

Ž .The probability density function p ? is also commonly cho-wk

sen as normal. Assumptions A and B allow us to cast Eq. 5 as
an optimization explicitly in terms of the process model and

Ž . Ž . Ž .the probability density functions p ? , p ? , and p ? :® w xk k 0

<arg max p x , x , . . . , x y , . . . , yŽ .0 1 T 0 Ty1
� 4x , x , . . . , x0 1 T

T y1

sarg max log p y y g x , kw xŽ .Ý ® k k
k� 4x , x , . . . , x0 1 T k s 0

qlog p x y f x , u , k qlog p x .w x Ž .Ž .w kq1 k k x 0k 0

Ž .If we assume furthermore that the density p ? is normalx0
Ž .with mean x and covariance P , and the densities p ? and0 w
kŽ .p ? are normal with zero mean and covariances Q and R,®k

respectively, then we have

<arg max p x , x , . . . , x y , . . . , yŽ .0 1 T 0 Ty1
� 4x , x , . . . , x0 1 T

T y1
2

y1sarg min I y y g x , k IŽ .Ý k k R
� 4x , x , . . . , x0 1 T k s 0

qI x y f x , u , k I y1
2 qI x y xI y1

2 ,Ž .kq1 k k Q 0 P 0

where I zI 2 s zTAz.A
The normality assumptions are sufficient for many prob-

lems. However, we can improve our descriptions of the ran-
dom variables w , ® , and x by introducing the constraintsk k k

w gW , ® gV , x gX ,k k k k k k

where the sets W , V , and X are closed and convex. Onek k k
commonly chooses the sets as polyhedral convex sets, that is,

W s w : w k FW w Fw k .� 4k k min k k max

Figure 1. Comparison of a normal and truncated nor-
mal-probability density function.

In a probabilistic framework, the constraint sets provide the
support for the probability density functions. If, for example,
we assume

� 4W s w : y1Fw F1 ,k k k

Ž .and the probability density function p ? is a normal withwk

zero-mean and unit variance, then the constraints project the
Ž .probability density function p ? onto W , yielding a trun-w kk

Ž .cated normal see Figure 1 . One obtains similar results if the
Ž .probability density function p ? is coupled with con-®k

straints. However, we advise against constraining the vector
® due to the possibility of outliers. Constraints may amplifyk
the effect of spurious measurements; if one constrains the
measurement residual ® , then the estimate x may beˆk k <Ty1
unable to ignore the spurious measurement, y . One can alsok
use constraints to generate asymmetric distributions by piec-
ing together truncated probability density functions as a jig-

Žsaw using variable decompositions Robertson, 1996; Robert-
.son and Lee, 1998 .

The probabilistic interpretation and implication of con-
straints on the state x is not as simple. Some of the issuesk
are illustrated in the following simple example. Suppose we
have a leaky vessel initially full of a liquid compound A. Let
the state x denote the mass of A at time k and the vectork
w denote the mass of A that leaks from the vessel duringk
the time interval k to kq1. A simple mass balance yields the
model

x s x qw . 6Ž .kq1 k k

In addition to the mass balance, we know the state x is posi-k
tive and bounded and the disturbance w is negative. Onek
immediate consequence of the state constraint x G0 is thatk
the state x and disturbance w are correlated: if the state xk k k
is small, then the state constraint x G0 implies that the dis-k
turbance w is also necessarily small. This result is physicallyk
obvious, yet also somewhat surprising. One typically assumes
that the exogenous disturbances are independent of the state
of the process. If we ignore the effect of recycle and feedback
loops, the disturbances are a result of variations in upstream
processes unaffected by the state of the downstream process.
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Another consequence of state constraints is the violation of
causality. If we rewrite the state equation explicitly in terms
of the vectors w , then we have the equivalent representationk

k

x s x q w . 7Ž .Ýkq1 0 j
js 0

If we suppose that the initial leak w is large, then the future0
� 4leaks w , w , . . . are necessarily small: there is less mass in1 2

the vessel that can leak out. Likewise, a large leak at time k
� 4requires that past leaks w , w , . . . , w are small. This causal0 1 1

correlation is equivalent to the correlation between the dis-
turbance vector w and the state x , because we model thek k
system as a Markov process. Again, one commonly assumes
that the disturbances are independent of the state of the pro-
cess, and in this case they are not. The conclusions from this
example are that state constraints can significantly alter the
probabilistic structure of the problem. Rarely is this structure
explicitly specified in the problem statement, so one should
exercise care with state constraints. The advantage of state
constraints is that they allow for simplified models: rather
than having to develop a detailed correlation between the
mass in the vessel x and the leak w , we can use a simplek k
mass balance in conjunction with constraints. Simplifying the
modeling requirements is important because the most time-

Žconsuming task in design is model development Ogunnaike
.1995 . We discuss the issue of constraints further in the fourth

section.
From a system-theoretic perspective, state constraints are

nonstandard; one usually chooses an exact model of the plant
and, separately, the characteristics of the disturbances, such
as boundedness, or that the disturbances are independent and

Ž .identically distributed with known zero mean and variance.
The properties of the model and disturbances are distinct.
State constraints, on the other hand, implicitly state that the
model is in error, because the disturbance-free evolution of

Ž .the process Eq. 3 , that is, w s0, may not automaticallyk
satisfy the state constraints for some x gX . Enforcing the0 0
state constraints may require a nonzero disturbance sequence
� 4w , w , . . . , , that implicitly using the disturbances to ac-0 1
count for model error. While not necessarily problematic from
a practical standpoint, nowhere in the proposed setup was
the issue of ‘‘robustness’’ addressed directly.

Moving-Horizon Estimation
Consider again the problem contained in Eq. 5. Under the

assumptions of normality, we can recast the state estimation
problem at time T as the following mathematical program

DTy1Ž� 4 � 4.w s w , w , . . . , w :k ks0 0 1 Ty1

� 4min F x , w , 8Ž .Ž .T 0 k
Ty 1� 4x , w0 k ks0

subject to

x s f x , u , k qw , 9aŽ .Ž .kq1 k k k

y s g x , k q ® , 9bŽ .Ž .k k k

w gW , x gX , 9cŽ .k k k k

where

T y1
2 2 2

y1 y1 y1� 4F x , w s I ® I qIw I qI x y xI .Ž . ÝT 0 k k R k Q 0 P 0
k s 0

We denote the optimal state and disturbance estimates at
� 4T � 4Ty1time T as the sequences x and w . In thisˆ ˆk <Ty1 ks0 k <Ty1 ks0

formulation, the matrices Q and R are the tuning parame-
ters for reconciling the model with the process measure-
ments. The matrices provide the means by which the errors
are distributed between the model and the process sensors.
In addition to their statistical significance, the matrices have
the following simple interpretation: the matrix Q provides a
measure of confidence in the model while the matrix R pro-
vides a measure of confidence in the process sensors. Thus, if
the matrix Q is ‘‘large’’ relative to R, then we are less confi-
dent in the model than in the process sensors, and vice versa.
The matrix P provides a measure of confidence in our
knowledge of the initial state: x.

Many different options exist for solving the mathematical
Ž .program Eqs. 8]9 . The problem as formulated requires the

solution of a nonlinear program, a computationally demand-
ing, although tractable, problem. If the process model is stiff
or has unstable dynamics, a simultaneous strategy, in which
the discretization and optimization are performed simultane-

Žously, is often advantageous Biegler 1997, 1998; Bock et al.
.1998 . When the process model is linear and the constraints

are polyhedral convex sets, the mathematical program re-
duces to a quadratic program, a far less computationally de-
manding problem. Regardless of the complexity of the prob-

Ž .lem, solving the state estimation problem Eq. 5 on-line is
usually impossible, because the size of problem in Eqs. 8]9
grows without bound as we collect more process measure-
ments. On-line implementation therefore requires that we
bound the size of the mathematical program in Eqs. 8]9.
Consequently, we need a strategy to compress the data. The
strategy we employ is approximate dynamic programming.

Ž .Consider the objective function F ? . We can rearrangeT
Ž .the objective function F ? by breaking the time intervalT

� 4 �into two pieces t s k : 0F kFT y Ny1 and t s k : T y1 2
4N F kFT y1 as follows:

T y1
T y1 2 2

y1 y1� 4F x , w s I ® I qIw IŽ . ÝT 0 k k R k Qk s 0
k s T y N

T y N y1
2 2 2

y1 y1 y1q I ® I qIw I qI x y xI .Ý k R k Q 0 P

k s 0

ŽBecause we use a state-variable description of the system i.e.,
.a Markov process , the quality

T y1
2 2

y1 y1I ® I qIw IÝ k R k Q
k s T y N

depends only on the state x , disturbance sequenceTyN
� .Ty1 � .Ty1w , and the process measurements y . Thek ksTyN k ksTyN
principle of optimality allows us to cast the estimation problem
Ž .Eq. 5 as a MHE. Standard dynamic programming argu-
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Figure 2. Moving-horizon strategy.

ments allow us to replace the mathematical program in Eqs.
8]9 with the following equi®alent mathematical program

T y1
2 2

y1 y1min I ® I qIw I q Z x ,Ž .Ý k R k Q TyN TyN
Ty 1� 4x , w k s T y NTy N k ksTyN

subject to the constraints in Eq. 9, where

� 4Z x s min F x , w : x s x , 10� 4Ž . Ž .Ž .t t 0 k t
ty1� 4x , w0 k ks0

subject to the constraints in Eq. 9. The mathematical pro-
Ž .gram Eq. 10 provides the general structure for MHE.

Ž .Whereas in the problem Eqs. 8]9 we considered all of the
available process measurements, in MHE we account explic-
itly only for the last N process measurements. We account
for the remaining process measurements using the function

Ž .Z ? . The name ‘‘moving-horizon estimation’’ arises fromTyN
Ž .the analogy of a sliding-estimation window see Figure 2 .

Ž .We refer to the function Z ? as the arri®al cost. Arrivalt

cost is fundamental in estimation, because, by providing a
means to compress the data, it allows us to transform the
unbounded mathematical problem into an equivalent fixed-
dimension mathematical program. The arrival cost compactly

� 4ty1summarizes the effect of the data y on the state x ,k ks0 t

thereby allowing us to fix the dimension of the optimization.
We can view arrival cost as the analogy of the ‘‘cost to go’’ in
standard backward dynamic programming. In probabilistic
terms, the arrival cost generates the conditional density func-

Ž .tion p x y , and vice versa: the arrival cost is pro-t < y , . . . , ty10

portional to the negative logarithm of the conditional density
Ž < .function p x y , . . . , y . Hence, we can view arrival costt 0 ty1

Ž .as an equivalent statistic Striebel, 1965 for the conditional
Ž < .density function p x y , . . . , y . Further discussion ont 0 ty1

the properties of arrival cost can be found in Rao and Rawl-
Ž . Ž .ings 1998 and Rao 2000 .

Arrival cost provides a general method for compressing the
process data. An excellent example of arrival cost is the Ric-
cati equation arising in Kalman filtering. Consider the prob-
lem in Eqs. 8]9, where we assume the model is linear

x s Ax qw , y sCx q ®kq1 k k k k k

and ignore the constraints X and W . If we use the Kalmank k
filter covariance update formula

P sGQGT
T

y1T T T Tq AP A y AP C RyCP C CP AŽ .Ty1 Ty1 Ty1 Ty1

11Ž .

subject to the initial condition P sP, then, assuming the0
matrix P is invertible, we can express the arrival cost explic-T
itly as

T Uy1Z x s xy x P xy x qF ,Ž . Ž . Ž .ˆ ˆT T T T T

where the x denotes the optimal estimate at time T givenT̂
� 4Ty1 Uthe measurements y and F denotes the optimal costk ks0 T

at time T. From the preceding arguments, we have

� 4min f x , wŽ .T 0 k
Ty 1� 4x , w0 k ks0

T y1
2 2

y1 y1' min I ® I qIw IÝ k R k Q
Ty 1� 4x , w k s T y NTy N k ksTyN

qI x y x I y1
2 qFU .ˆTyN TyN P TyNTy N

We can extract the Kalman filter by considering a horizon of
Ns1. For this scenario, we have

F x , w s ®T Ry1 ® qwT Qy1wŽ .T Ty1 Ty1 Ty1 Ty1 Ty1 Ty1

T y1q x y x P x y x .Ž . Ž .ˆ ˆTy1 Ty1 Ty1 Ty1 Ty1

Substituting in the model equations, evaluating the minimum
with respect to w and x , and using some algebra, weTy1 Ty1
obtain the well-known result

x s Ax q L y qCAxŽ .ˆ ˆ ˆT Ty1 T Ty1

for the Kalman filter, where

y1T TLs AP C RqCP C .Ž .Ty1 Ty1

Unfortunately, algebraic expressions for arrival cost do not
exist when either constraints are present or the process model
is nonlinear. As these are the problems of interest, we need
to generate approximate algebraic expressions for the arrival
cost. At one extreme, we can discard the past information by
approximating the arrival cost as a constant function. At the
other extreme, we can ignore the current measurements and
consider only the past measurements by approximating the
arrival cost with the extended real-valued function

FU : x s x̂t t t
Ẑ x sŽ .t t ½ `: x / x .ˆt t

Both of these choices are undesirable. Rarely are we com-
pletely ignorant or informed of the value of the state x . Onet

strategy to approximate the arrival cost is to use a first-order
Taylor series approximation of the model around the esti-
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� 4tmated trajectory x . This strategy approximates the ar-ˆk ks0
rival cost with an extended Kalman filter covariance update
formula. We interpret this strategy as a neighboring extremal
paths strategy in the context of estimation. Neighboring ex-
tremal paths are used to generate approximate optimal feed-
back laws for nonlinear systems by employing an extended

Ž .linearization Bryson and Ho, 1975 . The basic idea is as fol-
lows: If the deviation from the optimal path is small, then a
linear approximation at the optimal path accurately describes
the neighboring path.

If we let

­ f x , u , k ­ g xŽ .Ž .k k k
A s , C s ,k k­ x ­ xk kx xˆ ˆT T

then we obtain the extended Kalman filter covariance recur-
sively from the equation

y1T T TP sQq A P yP C RqC P C C P A ,Ž .ž /Tq1 T T T T T T T T T T

12Ž .

subject to the initial condition P sP. The choice0

2ˆ y1Z x sI xy x I 13Ž . Ž .ˆt t Pt

summarizes our best available knowledge, to a first-order ap-
proximation, without introducing extra knowledge not avail-
able from the measurements. Using the extended Kalman fil-
ter to approximate the arrival cost has many advantages.
When there are no constraints, one can view the estimator as
an iterated extended Kalman filter. When the process model
is linear, the estimator reduces to a Kalman filter.

Ž .One needs to be wary of divergence instability when ap-
proximating the arrival cost. So long as the approximate ar-

ˆ Ž .rival cost Z ? satisfies certain technical conditions, one ist

Žguaranteed nondivergence, or stability Rao and Rawlings,
.1998 . When the process model is linear, the Kalman filter

covariance, regardless of whether there are constraints, yields
Ž .a stable estimator Rao et al., 1999b . However, when the

process model is nonlinear, the extended Kalman filter co-
variance does not guarantee stability, and additional mea-
sures are necessary to guarantee stability. In practical terms,
there should be a degree of forgetting: the estimator should
not weigh the past data too heavily. One property of the

ŽKalman filter is that it exponentially forgets the past data cf.
.Anderson, 1999 . If one is concerned about estimator diver-

gence, then adding a ‘‘forgetting factor’’ to the approximate
arrival cost improves the estimator’s ‘‘robustness.’’ A simple
strategy for generating a forgetting factor is to premultiply

Ž .the approximate arrival cost by a scalar a g 0, 1 :

2ˆ y1Z x s a I xy x I .Ž . ˆT T P T

Ž .The interested reader is referred to Rao 2000 for further
discussion regarding forgetting factors in constrained
moving-horizon estimation.

We therefore formulate MHE at time T as the solution to
the following mathematical program

ˆ � 4min F x , w ,Ž .T TyN k
Ty 1� 4x , wTy N k ksTyN

subject to the constraints

x s f x , u , k qw ,Ž .kq1 k k k

y s g x , k q ® ,Ž .k k k

w gW , x gX ,k k k k

where

ˆ � 4F x , wŽ .T TyN k

T y1
2 2 2

y1 y1 y1s Iw I qI ® I qI x y x I .ˆÝ k Q k R TyN TyN P Ty N
k s T y N

We denote, with abuse of notation, the optimal state and dis-
� 4Tturbance estimates at time T as the sequences x̂k <Ty1 kyTyN

� 4Ty1and w . Unlike the ‘‘full information’’ problemˆk <Ty1 ksTyN
Ž .Eqs. 8]9 , the MHE estimator generates only truncated esti-
mates}the consequence of considering only the data se-

Ž 4Ty1 Žquence y . The pair x , P summarizes theˆk ksTyN TyN TyN
prior information at time T y N. The vector x is theT̂yqN
moving-horizon state estimate at time T y N and the matrix
P is the solution to Eq. 12 subject to the initial conditionTyN
P . When T F N, MHE is equivalent to the full information0

Destimator. For simplicity, let x s x . This formulation ofˆ ˆT T <Ty1
Ž .MHE was first proposed by Muske et al. 1993 and Robert-

Ž .son et al. 1996 .
The choice of the horizon length N is a tuning parameter

in MHE. The performance of MHE improves as one in-
creases the horizon length, though with diminishing returns
once N is sufficiently large. However, the computational cost
also increases with the horizon length. One needs to recon-
cile these two objectives when choosing the horizon length.
From the theoretical standpoint, MHE is stable so long as
the horizon length is greater than the order, or the observ-
ability index, of the system. A practical rule of thumb is to
choose the horizon length as twice the order of the system.

Constraints
The strength of MHE is the ability to incorporate con-

straints in estimation. One can plausibly argue that nonlinear
dynamics also motivate the use of MHE. However, we be-
lieve there are many competitive alternatives to uncon-
strained MHE. From a theoretical standpoint, one strength of

ŽMHE is that it provides stability guarantees Rao and Rawl-
.ings, 1998 . However, many other state estimation strategies

also provide stability guarantees. For example, one can also
construct a stable estimator using a local coordinate transfor-

Žmation by output injection Bestle and Zeitz, 1983; Krener
.and Isidori, 1983 . We note that, unlike differential geomet-

ric methods, moving horizon strategies are applicable to a
larger class of problems. In particular, any feedback lineariz-
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able system also can be stabilized with a moving-horizon con-
Ž .troller Meadows et al., 1995 . We expect a dual result holds

for estimation.
Stability guarantees are important, but performance is the

predominant concern. The extended Kalman filter provides
Žonly weak local stability guarantees cf. Song and Grizzle,

.1995 , yet is the de facto choice for estimating the state with
nonlinear process models. We can view unconstrained MHE
as a form of extended Kalman filtering or, rather, the ex-
tended Kalman filter as a form of unconstrained MHE. The
difference between the two strategies is the degree of opti-
mization: the extended Kalman filter takes only one Newton
step, while unconstrained MHE takes as many Newton steps

Ž .as necessary to satisfy the local optimality conditions. We
therefore view unconstrained MHE as a form of iterated ex-
tended Kalman filtering and the extended Kalman filter as a
suboptimal strategy for unconstrained MHE with a horizon
length Ns1. One reason for the success of the extended
Kalman filter is that often most of the cost reduction in opti-
mization is obtained during the first few Newton steps. Per-
formance rarely improves tangibly even if one iterates fur-
ther.

Without constraints, MHE often tends to perform the same
as the extended or, rather, the iterated extended Kalman fil-
ter. Performance changes when one adds constraints to the
problem. Constraints therefore motivate the use of MHE. We
can best illustrate the potential of MHE with the following
examples.

Example of inequality constraints yielding
impro©ed estimates

ŽConsider the following discrete-time system this state-
Ž .space system is a realization of the following system: G s s

Figure 3. Comparison of estimators for Example 4.1.

Figure 4. Comparison of output predictions for Exam-
ple 4.1.

Ž . Ž 2 .y3sq1 r s q3sq1 sampled with a zero-order hold and
.sampling time of 0.3

0.9962 0.1949 0.03393x s x q w ,kq1 k ky0.1949 0.3815 0.1949

w xy s 1 y3 x q ® . 14Ž .k k k

� 4We assume ® is a sequence of independent, zero-mean,k
normally distributed random variables with covariance 0.01,

< < � 4and w s z where z is a sequence of independent, zero-k k k
mean, normally distributed random variables with unit co-
variance. We also assume the initial state x is normally dis-0
tributed with zero mean and covariance equal to the identity.

We formulate the constrained estimation problem with Q
s1, Rs0.01, P s1, and xs0. For the MHE, we choose0
Ns10. To capture our knowledge of the random sequence
w , we add the inequality constraint w G0. Note, this for-k k
mulation yields the optimal Bayesian estimate. A comparison
of the Kalman filter, full information estimator, and MHE
for a single realization of Eq. 14 is shown in Figure 3]4. As
expected, the performance of the constrained estimators is
superior to the Kalman filter, because the constrained esti-
mators possess, with the addition of the inequality con-
straints, the proper statistics of the disturbance sequence, w .k
Hence, the constrained estimation problem formulated ear-
lier accurately models the random variable w .k

If we consider the statistics of the random variable w , it isk
important to note that the mean is not zero and the convari-

'ance is not one. Rather, the mean is 2r 2p and the covari-
Ž .ance is 1y2rp . When we consider the negative inverse log-

arithm of the probability density function, however, we have

1
Xylog p w A w w for w G0.Ž .w k k k kk 2

Note, therefore, that constraints allow for non-Gaussian dis-
tributions.

Leak detection and in©entory estimation
Consider the problem of detecting the location and magni-

tude of a leak in the wastewater treatment process shown in
Figure 5. We suppose the process is described by the follow-
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Figure 5. Tank process.

ing linear state-space model

0.89168 0 0 0 1.0
0.10832 0.90518 0 0.04306 0

x s x0 0.09482 0.89524 0 0kq1 k
0 0 0.10476 0.89235 0
0 0 0 0 0

y1 0 0 0 0
0 y1 0 0 0

q w ,0 0 y1 0 0 k
0 0 0 y1 0
0 0 0 0 1

1 0 0 0 0
0 1 0 0 0

y s x q ® .0 0 1 0 0k k k
0 0 0 1 0
0 0 0 0 m

The physical meaning of the entries in state variable x arek
given in Table 1. We choose ms1 in the y equation justk
given when we suppose the mass of waste entering the pro-
cess is measured, and ms0 otherwise. We suppose the mass
of each tank and the mass flow rate of waste entering the
process are measured with error covariance

w xRsdiag 8 8 8 8 4 .

Table 1. State Description for Example
Ž1.x Mass in equalizing tank
Ž2.x Mass in Tank No. 1
Ž3.x Mass in Tank No. 2
Ž4.x Mass in Tank No. 3
Ž5.x Mass of waste entering equalizing tank

As the leak is limited to waste tank No. 2, the process was
< <simulated with w s z , where z is a normally distributedk k k

random variable with covariance matrix

w xQ sdiag 0 0 5 0 15 .z

Ž .As the location of the leak is unknown to the estimator , we
design the estimator with the covariance matrix

w xQsdiag 5 5 5 5 15 .

We furthermore added the constraints w G0 and x G0 ink k
order to satisfy the mass balances: mass is only lost through a
leak, and the tanks must have positive mass. A horizon of
Ns10 was chosen.

ŽTwo separate scenarios were considered flow measured
.and unmeasured along with a control where there is no leak.

The results of the simulations are shown in Table 2. As one
would expect, both the Kalman filter and MHE are able to
detect the leak. The ability to detect the leak degrades when
the flow rate is unmeasured. This result is expected, as less
information is available to both estimators. The benefit of
constraints arise when one attempts to estimate the total
losses. While MHE is able to provide a fairly accurate esti-
mate of the total losses, the Kalman filter underestimates the
total losses. The Kalman filter also provides negati®e esti-
mates for the losses in the equalizing tank and tank No. 1 in
all four scenarios. Furthermore, when there is no leak, the
Kalman filter predicts a net addition of mass to the tank sys-
tem, which obviously is physically impossible. One can at-
tribute this difference to the addition of constraints; the only
difference between the two algorithms.

Note also that the constrained estimates are slightly biased
away from zero in the tanks not leaking. Recall from the pre-

Table 2. Simulation Results of Example
Ž .Mean Losses by TankTotal

Scenario Losses Equal. No. 1 No. 2 No. 3

Flow Actual 948.08 0 0 1.8962 0
Measured MHE 992.82 0.2429 0.2387 1.1253 0.3176

KF 593.77 y0.2538 y0.0610 1.0262 0.0425

No leak Actual 0 0 0 0 0
MHE 295.49 0.2418 0.2698 0.2925 0.27001
KF y186.44 y0.2552 y0.0129 0.0113 0.0014

Flow Actual 916.81 0 0 1.8336 0
Unmeasured MHE 907.54 0.1074 0.2427 1.0664 0.3123

KF 405.24 y0.5722 y0.0626 0.9761 0.03860

No leak Actual 0 0 0 0 0
MHE 244.87 0.1655 0.2729 0.2794 0.2648
KF y335.74 0.5732 y0.0169 y0.0032 y0.0010
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vious example that a truncated normal does not have a zero
'mean. Rather, the mean is 2sr 2p , where s is the stan-

dard deviation of the corresponding normally distributed ran-
dom variable. Any automated procedure involving hypothesis
testing needs to account for this fact. This point is clearly
illustrated when we simulate the waste treatment process
without any leaks. When the flow rate is measured, the con-
strained estimate is worse than the unconstrained estimate.
The poor estimates are due to the positive mean values: the
constrained estimates have a mean bias ofroughly 0.25. If we
remove the bias, the estimate for the total leak is roughly
zero, as desired. However, if we remove the bias from the
simulation where there is a leak in Tank No. 2, then the esti-
mate for the total leak is the same as the Kalman filter. This
example illustrates some of the issues one needs to be wary
of when implementing constraints. While the constrained es-
timators provide a good estimate of the total losses when there
is a leak, MHE and the Kalman filter both provide poor esti-
mates when there are no leaks. The problem stems from an
incorrect model of the process: the true process has no leaks,
while the model assumes a leak in each tank. Nevertheless,
one would normally use such a model in fault detection.
Hence, any analysis would need to account for this discrep-
ancy.

A ‘‘proper’’ strategy is to formulate this problem as a con-
strained signal-detection problem. One would model all leak
possibilities and then discriminate between the various sce-
narios using hypothesis testing. An alternative is to employ

Ž .mixed-integer programming cf. Gatzke and Doyle, 1999 . As
the focus of this article is not fault detection, but rather con-
strained monitoring, we do not pursue this topic further.

Semibatch Reactor
Consider the stirred-tank reactor depicted in Figure 6

where the following liquid-phase exothermic reaction occurs

Aq2 B™C.

The state estimation problem, inspired by the problem con-
Ž .sidered in Rawlings et al. 1989 , is to estimate precisely the

concentration of A in the reactor. Because overaddition of B
leads to product degradation, precise concentration estimates
of A as a function of time are necessary to complete the
reaction without overaddition of B. We suppose only temper-
ature measurements corrupted with sensor noise are avail-
able. Furthermore, we suppose the exact reaction kinetics are
unknown with the exception of the heat of reaction D H . Ther
extent of the reaction is estimated using reaction calorimetry
Ž .cf. Schuler and Schmidt, 1992 .

Under standard assumptions, such as negligible potential
and kinetic energy effects, constant density, uniformly homo-
geneous mixture, and no phase transition, we simulated the
reactor using the following model:

V̇ s F ,

E F
2Ȧsy k exp y AB y A ,0 ž /T V

Figure 6. Reactor.

E F
2Ḃsy2k exp y AB q C y B ,Ž .0 B fž /T V

D H E Fr 2Ṫ sy k exp y AB q T yTŽ .0 fž /rC T Vp

UA
q T yT .Ž .crC FVp

The model parameters are listed in Table 3. The flow-rate
profile, though scaled differently, is the one used in the oper-
ation of the industrial reactor described by Rawlings et al.
Ž .1989 . To account for imperfect cooling and modeling inac-
curacies, we assumed the cooling-water temperature fluctu-
ates. The flow-rate profile and the cooling-water temperature
used in the simulation are shown in Figure 7. We suppose
the temperature measurements are available every 30 s, cor-
rupted with zero mean and unit variance Gaussian noise. The
measured and actual reactor temperature are shown in Fig-
ure 8.

The estimator has available only the following simplified
Žtime-varying linear model based on reaction calorimetry we

also considered a model where the cooling water tempera-

Table 3. Parameters for Example
11 y2 y1 Ž .k 9=10 mol ?min V 0 100 L0

Ž .E 6,000 A 0 0.5 molrL
Ž .r 1000 grL B 0 0 mol
Ž .C 0.239 Jrg ?K T 0 300 Kp

5UA 2=10 Jrmin ?K
T 300 Kf

T 300 Kc
C 2.2 molrLB f

4yD H 5=10 Jrmolr
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Figure 7. Reactor inputs.

ture fluctuations were included as a second disturbance: our
.simulation results were no different

V̇ s F ,

F
Ȧs r y A ,

V

F
Ḃ t s2 r q C y B ,Ž . Ž .BfV

D H F UAr
Ṫ s r q T yT q T yTŽ .Ž .f crC V rC Vp p

dQ s dw.r

Figure 8. Measured and actual reactor temperature.

Figure 9. Comparison of estimates.

The trick in reaction calorimetry is to estimate the reaction
Ž .rate r ? from the energy balance. The model was discretized

with a zero-order hold and a sampling period of 30 s. The
horizon length was Ns10.

The advantage of the simplified model is that the reaction
kinetics need not be known. However, as pointed out by De-

Ž . Ž .Valliere and Bonvin 1990 and M’hamdi, et al. 1996 , spuri-`
ous estimates may result due to negative estimates of the re-
action rate. We therefore constrain both the reaction rate
and concentrations to be positive. We tuned the estimator
with Qs I and P sI and initialized the estimator with the0
‘‘true’’ initial conditions.

The results of the simulation are shown in Figure 9. Both
the Kalman filter and MHE overestimate the actual reaction
rate. This mismatch is due to fluctuations in the cooling-water
temperature. The addition of the constraints prevents MHE
from estimating negative reaction rates and negative concen-
trations of A. Because MHE does not estimate negative re-
action rates, the MHE estimate of the reaction rate is larger
than the Kalman filter estimate. Consequently, without the
constraint on the concentrations, MHE also would estimate
negative concentrations of A. The reason that the estimates
are positive, even though the estimate of the reaction rate is
too large, is due to smoothing. At each sampling time, MHE
semi-implicitly estimates the entire reaction rate and concen-
tration profile. We refer to these estimates as the smoothed

Ž .estimates x for kFT . The results shown in Figure 9 areˆk <T
Ž .only the tail of the estimated trajectory x and needT̂ <Ty1

not mutually satisfy the energy and mass balances. The
smoothed estimates, however, mutually satisfy the energy and
mass balances.
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Conclusions
We have discussed MHE in the context of constrained pro-

cess monitoring. MHE, as we have demonstrated through ex-
amples, is a practical and powerful strategy for constrained
process monitoring. MHE allows the use of additional physi-
cal knowledge about systems, such as constraints and nonlin-
ear dynamics, unavailable with other methods. While the
ability to incorporate nonlinear dynamics is important, the
distinguishing feature of MHE is the ability to incorporate
inequality constraints. One can show, in particular, that MHE
reduces to a Kalman filter or iterated extended Kalman filter
when constraints are not present. Hence, we can view MHE
as an extension of Kalman filtering.

Inequality constraints arise in many different contexts. We
have illustrated the importance of inequality constraints in
the following situations.

Truncated Distributions. One often possesses prior knowl-
edge in the form of bounds on the disturbances, state vari-
ables, and unknown parameters. If we consider the leak de-
tection example, the leaks and tank volumes are always posi-
tive. Failure to incorporate this information in the estimator,
as illustrated in the inequality constraints and leak detection
examples, may lead to poor estimates.

Asymmetric Distributions. By piecing together truncated
distributions, it is possible to generate asymmetric distribu-
tions. The need for asymmetric distributions is illustrated in
the leak detection example, where mass enters the equalizing
tank at a different frequency and magnitude than it leaves.
The inability to model this behavior can lead to spurious esti-
mates, as illustrated by the Kalman filter’s low estimate of
the total losses due to the leak.

Model Simplification. Whereas truncated and asymmetric
distributions only alter the description of the unknown dis-
turbances, state constraints alter the probabilistic structure of
the estimation problem by correlating the disturbances with
the state. The advantage is that one can use the correlations
to simplify the model significantly. This idea is illustrated in
the semibatch reactor example, where a simplified model of
the semibatch reactor using reaction calorimetry coupled with
constraints allows for accurate concentration estimates.

Reconciling Conser®ation Laws. Poor measurements can
lead to estimates that violate the conservation laws used to
model the system. As one often expects the estimates to sat-
isfy the conservation laws, direct enforcement may require
inequality constraints. In the semibatch reactor example, the
estimates of the reaction rate are too high, and the estimates
need to be adjusted in order to prevent negative concentra-
tion estimates. From a numerical perspective, one can use
constraints to prevent the optimization algorithm from choos-
ing spurious iterates that lead to computational problems re-
garding the solution of the conservation laws and the associ-
ated constitutive relations.

The strength and weakness of MHE is the use of mathe-
matical programming. For reasonable models, the optimiza-
tion problems can be solved in a few seconds on desktop
computers using standard software. However, for some prob-
lems this performance is insufficient. With the increasing

Žpower of computers and improved algorithms that is, algo-
.rithms now solve quadratic programs in polynomial time ,

MHE will become an alternative for an expanding class of
constrained process monitoring problems in the near future.

Acknowledgments
The authors gratefully acknowledge the financial support of the

industrial members of the Texas-Wisconsin Modeling and Control
Consortium and NSF through Grant No. CTS-9708497. All simula-

Ž .tions were performed using Octave http:rrwww.octave.org . Octave
is freely distributed under the terms of the GNU General Public
License.

Literature Cited
Albuquerque, J., and L. T. Biegler, ‘‘Data Reconciliation and

Gross-Error Detection for Dynamic Systems,’’ AIChE J., 42, 2841
Ž .1996 .

Albuquerque, J., and Biegler, L. T. ‘‘Decomposition Algorithms for
On-Line Estimation with Nonlinear DAE Models,’’ Comput. Chem.

Ž .Eng., 21, 283 1997 .
Anderson, B. D. O., ‘‘From Wiener to Hidden Markov Models,’’

Ž .IEEE Control Syst. Mag. p. 41 1999 .
Ascher, U. N., and L. R. Petzold, Computer Methods for Ordinary

Differential Equations and Differential-Algebraic Equations, SIAM,
Ž .Philadelphia 1998 .
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