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Abstract

This article considers moving horizon strategies for constrained linear state estimation. Additional information for estimating state
variables from output measurements is often available in the form of inequality constraints on states, noise, and other variables.
Formulating a linear state estimation problem with inequality constraints, however, prevents recursive solutions such as Kalman
"ltering, and, consequently, the estimation problem grows with time as more measurements become available. To bound the problem
size, we explore moving horizon strategies for constrained linear state estimation. In this work we discuss some practical and
theoretical properties of moving horizon estimation. We derive su$cient conditions for the stability of moving horizon state
estimation with linear models subject to constraints on the estimate. We also discuss smoothing strategies for moving horizon
estimation. Our framework is solely deterministic. � 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The Kalman "lter is the standard choice for estimating
the state of a linear system when the measurements are
noisy and the process disturbances are unmeasured. One
reason for the popularity of the Kalman "lter is that it
possesses many important theoretical properties such as
stability. Often additional insight about the process is
available in the form of inequality constraints. With the
addition of inequality constraints, however, general re-
cursive solutions such as Kalman "ltering are unavail-
able. One strategy for determining an optimal state
estimate is to reformulate the estimation problem as
a quadratic program. This formulation allows for the
natural addition of inequality constraints. While there
exist many strategies to solve e$ciently quadratic
programs with the particular structure of the linear

estimation problem (cf. Biegler, 1998), the problem grows
without bound as we collect more measurements.
Building on the success of receding horizon control

(for recent reviews, see Mayne, 1997; Lee & Cooley, 1997;
Mayne, Rawlings, Rao, & Scokaert, 2000), moving hor-
izon estimation (MHE) has been suggested as a practical
strategy to incorporate inequality constraints in estima-
tion (cf. Muske, Rawlings, & Lee, 1993; Muske &
Rawlings, 1995; Robertson, Lee, & Rawlings, 1996; Tyler,
1997; Rao & Rawlings, 2000b). The basic strategy of
MHE is to reformulate the estimation problem as
a quadratic program using a moving, "xed-size estima-
tion window. The "xed-size estimation window is neces-
sary to bound the size of the quadratic program. Because
only a subset of the data is considered, stability questions
arise. The contribution of this article is that we
prove stability for moving horizon estimation. We also
brie#y discuss smoothing strategies. The central theme
of our analysis is the relationship between the full in-
formation estimation problem and its moving horizon
approximation. This relationship is analyzed using for-
ward dynamic programming and allows us to derive
su$cient conditions for stability. Our stability results
build on some of the general results of Rao and Rawlings
(2000b).
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�Other researchers have used the term cost to come (cf. Bas7 ar &
Bernhard, 1995) or cost to arrive (cf. Verdu & Poor, 1987).

2. Problem statement

Let the system generating the data sequence �y
�
�

be modeled by the following linear, time-invariant,
discrete-time system

x
���

"Ax
�
#Gw

�
, (1a)

y
�
"Cx

�
#v

�
, (1b)

where it is known that the states and disturbances satisfy
the following constraints:

x
�
3�, w

�
3�, v

�
3�.
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�
3��, y

�
3��, and w

�
3�� and the

sets �, �, and � are polyhedral and convex (i.e.
�"�x:Dx)d�) with 03� and 03�. Let x(k; z,�w

�
�)

denote the solution of model (1) at time k subject to the
initial condition z and disturbance sequence �w

�
����
���

:
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�
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���
�
���

A�����Gw
�
.

We formulate the constrained linear state estimation
problem as the solution to the following quadratic
problem:
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where the objective function is de"ned by
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!Cx(k;x
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�). We as-

sume the matrices Q, R, and �
�
are symmetric positive

de"nite. The pair (x(
�
,�

�
) summarizes the prior informa-

tion at time ¹"0 and is part of the data of the state
estimation problem. We refer to this problem as the full
information estimator, because we consider all of the avail-
able measurements. The solution to (2) at time ¹ is the
unique pair (x(

�����
,�w(

�����
����
���

), and the optimal pair
yields the state estimate �x(

�����
����
���

, where

x(
�����

:"x(k,x(
�����

,�w(
�
�).

To simplify notation, let x(
�
:"x(

�����
, where x(

����
:"x(

�
.

3. Moving horizon approximation

E$cient strategies exist for solving the quadratic pro-
gram (2). However, the problem size grows with time
as the estimator processes more data. As a result, the

problem complexity scales at least linearly with ¹. To
make the estimation problem tractable, we need to
bound the problem size. One strategy to reduce the
problem (2) to a "xed dimension quadratic program is to
employ a moving horizon approximation. The basic
strategy of the moving horizon approximation is to con-
sider explicitly a "xed amount of data, while approxim-
ately summarizing the old data not explicitly accounted
for by the estimator. The key to preserving stability and
performance is how one approximately summarizes the
old data.
Consider again the full information problem (2). We

can rearrange the objective function �
�
( ) ) by breaking

the time interval into two pieces: t
�
"�k : 0)k)¹!

N!1� and t
�
"�k :¹!N)k)¹!1�.
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By the Markov property of the system (1), the quantity
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depends implicitly through the model (1) only on the
state x

��

and the decision variables w

�
in the second

time interval t
�
. Exploiting this relation using forward

dynamic programming, we can establish the equivalence
between a full information problem and an estimation
problem with a "xed size estimation window.
Consider the reachable set of states at time ¹ gener-

ated by a feasible initial condition x
�
and disturbance

sequence �w
�
����
���
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�
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where the minimization is subject to the constraints (3). It
follows that �

�
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�
). Arrival cost is

a fundamental concept in MHE, because the following
equivalence can be established simply using forward dy-
namic programming
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�For example, if the conditional density function is normally
distributed (i.e. p(x

��
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)&N(x(

��

,�

��

)), then

!log(p(x
��


�y
�
,2, y

��
��
))J(x

��

!x(

��

)����

��

(x

��

!x(

��

).

where the minimizations are subject to the con-
straints (3), x

�
:"x(k!¹!N; z,�w

�
�), and v
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:"y

�
!

Cx(k!¹!N; z,�w
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The arrival cost compactly summarizes the e!ect of the
data �y

�
���
��
���

on the state x
��


, thereby allowing us to
"x the dimension of the optimization. We can view arri-
val cost as the analogue to the cost to go in standard
backward dynamic programming. Loosely speaking, in
probabilistic terms, the arrival cost generates the con-
ditional density function p(x

��

�y

�
,2, y

��
��
) and

vice versa: the arrival cost is proportional to the negative
logarithm of the conditional density function
p(x

��

�y

�
,2, y

��
��
).� Hence, we may view arrival

cost as an equivalent statistic (Striebel, 1965) for the
conditional density function p(x

��

�y

�
,2, y

��
��
).

If we are able to construct analytic expressions for the
arrival cost, then it is possible to develop recursive es-
timators. One example is Kalman "ltering. Consider the
unconstrained estimation problem (2). If we use the
Kalman "lter covariance update formula (Jazwinski,
1970)
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subject to the initial condition �
�
, then, assuming the

matrix �
�
is invertible, we can express the arrival cost

explicitly as
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where x(
�
denotes the optimal estimate at time ¹ given

the measurements �y
�
����
���

and �H
�
denotes the optimal

cost at time ¹. From the preceding arguments, we have
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We can extract the Kalman "lter by considering a hor-
izon of N"1. For this scenario, we have

�
�
(z,w

���
)"v�

���
R��v

���
#w�

���
Q��w

���

#(z!x(
���

)����
���

(z!x(
���

).

Substituting in the model equation (1), evaluating the
minimum with respect to w

���
and x

���
, and using

some algebra, we obtain the well-known result

x(
�
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#A�
���

C�(R#C�
���

C�)��(y
�
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)

for the Kalman "lter.
Unfortunately, for the constrained problem, we are

unable to generate an analytic expression for the arrival
cost. Inequality constraints make the problem combina-
torial, so general analytic expressions for the arrival cost
are unavailable. One reasonable solution then is to ap-
proximate the arrival cost for the constrained problem
with the arrival cost for the unconstrained problem. This
choice has the desirable property that when the inequal-
ity constraints are inactive, the approximation is exact.
Because we consider an approximation of the arrival
cost, stability questions arise: does a poor choice of an
approximate arrival cost lead to instability? As demon-
strated by examples in Rao (2000), Rao and Rawlings
(2000a), the answer is yes. Instability may result for some
systems if the arrival cost is improperly approximated. In
the next section, we discuss the details of the stability
arguments. As we demonstrate, it is not necessary to
generate explicitly an analytic expression for the arrival
cost. Rather, as discussed in Rao and Rawlings (2000b),
the approximate arrival cost needs only to satisfy an
inequality.
We formulate MHE as the solution to the following

quadratic program:
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subject to the constraints (3) where the objective function
is de"ned by
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�
�). The MHE cost �K H
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approximates the

full information cost �H
�

by replacing the arrival
cost �
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(z) with the quadratic approximation
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. The pair
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) summarizes the prior information at time

¹!N. The vector x( ��
��


is the moving horizon state
estimate at time ¹!N and the matrix �

��

is the

solution to (4) subject to the initial condition �
�
. For

¹)N, MHE is equivalent to the full information es-
timator: �K

�
( ) )"�

�
( ) ). We assume at this point that the

matrix �
��


is invertible; conditions for nonsingularity
are discussed later. The solution to (2) at time ¹ is the
unique pair (zH,�w( ��
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), and the optimal pair
yields the state estimate �x( ��
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To simplify notation, let x( ��
�
:"x( ��

�����
, where

x( ��
����

:"x(
�
. This formulation of MHE was "rst pro-

posed by Muske et al. (1993) and Robertson et al. (1996).

4. Stability analysis

When the inequality constraints (3) are not present, the
solution to the quadratic program (2) may be obtained
analytically, yielding the Kalman "lter. The relationship
between least squares and the Kalman "lter is well
known (cf. Bryson & Frazier, 1963; Rauch, Tung, &
Striebel, 1965). Even with the addition of constraints, the
estimator enjoys analogous stability properties. In par-
ticular, the constrained estimator is stable in the sense of
an observer. The following discussion of observer stabil-
ity is premised on classical Lyapunov stability theory for
dynamical systems. The concepts are completely analog-
ous to their classical counterpart. To account for con-
straints, we have modi"ed the de"nition of stability in an
analogous manner to Keerthi and Gilbert (1988).

De5nition 1. The estimator is an asymptotically stable
observer for the system

x
���

"Ax
�
, y

�
"Cx

�
(6)

if for any �'0 there corresponds a number �'0
and a positive integer ¹M such that if ��x

�
!x(

�
��)� and

x(
�
3�, then ��x(

�
!A�x

�
��)� for all ¹*¹M and

x(
�

PA�x
�
as ¹PR.

The implications of constraints on the estimator are
more subtle than for the regulator. In particular, the
estimator has no control over the evolution of the state of
the system. A poor choice of constraints may prevent
convergence to the true state of the system (6). For a more
detailed discussion of constraints, see Rao (2000). One
solution is to require that the evolution of the system (6)
respects the constraint � (i.e. A�x

�
3� for k*0). While

this assumption is reasonable, the constraints need to
satisfy only the following weaker assumption to prove
stability.

(I) Suppose the system (6) with initial condition x
�
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erates the data (i.e. y
�
"CA�x

�
). We assume there
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���

, �w
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, and �'0 such that
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where x
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:"x(k;x
���
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�) and
v
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�
!Cx(k;x

���
,�w

���
�).

Assumption I states that if we consider an in"nite
amount of data generated by the system (6), then there
exists a feasible state and disturbance trajectory that
yields bounded cost. It is straightforward to demonstrate
that assumption I is a weaker assumption: if we choose
�"	

���
(���

�
), then assumption I follows if we assume

the evolution (6) respects the constraints �. Recall, by
assumption, 03� and 03�.
Assumption I is also a su$cient condition for the

existence of a solution to the quadratic programs (2) and
(5). The upper bound � is necessary to prove stability.
Without this bound, we have no reference with which to
construct a Lyapunov function. Unlike regulation where
we have a strictly monotone nonincreasing cost function
that is bounded below by zero, we have a strictly mono-
tone nondecreasing cost function in estimation that is not
necessarily bounded above (e.g. consider the case when
assumption I is violated). The role of � is to provide this
upper bound when constraints prevent the estimator
from tracking the system perfectly. Otherwise, without
constraints, we can readily generate the upper bound
with �"	

���
(���

�
) (i.e. the cost of tracking the system

perfectly).
Before discussing the stability of the MHE, we "rst

state the following stability result for the full information
estimator.

Proposition 2. Suppose the matrices Q, R, and �
�

are
positive dexnite, (C,A) is observable, and assumption
I holds. Then, the constrained full information estimator is
an asymptotically stable observer for the system (6).

Proof. See Muske et al. (1993). �

To establish asymptotic stability for MHE, we require
the following lemmas.

Lemma 3. Suppose (C,A) is observable and N*n. If
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then ��x(
�
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�
��P0.

Proof. The proof is omitted for brevity. See Rao
(2000). �

Lemma 4. The Kalman xlter covariance matrix �
�
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xes the following inequality for all p3R
�
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(p!x( ��
�
)����

�
(p!x( ��

�
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where the minimization is subject to the constraints (3).
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Proof. The proof is in Appendix A. �

Before we establish stability, we state conditions that
guarantee the matrix�

�
is positive de"nite (invertible). If

we assume that (C,A) is detectable and (A,GQ����) is
controllable, then

lim
���

�
�

"�
�
,

where �
�

'0 is the unique steady-state solution to the
Riccati equation (4) (de Souza, Gevers, & Goodwin,
1986). If we choose�

�
*�

�
, then�

�
is positive de"nite

for all k*0 (Bitmead, Gevers, Petersen, & Kaye, 1985).
As an alternative, if the matrixG is nonsingular (in which
case GQG� is positive de"nite), then �

�
is also positive

de"nite for all k*0.

Proposition 5. Suppose the matrices Q, R, and �
�

are
positive dexnite, (C,A) is observable, assumption
I holds, N*n, and either

(i) The matrix G is nonsingular, or
(ii) (A,GQ����) is controllable and �

�
*�

�
.

Then the constrained moving horizon estimator is an asymp-
totically stable observer for the system (6).

Proof. We begin by demonstrating convergence. An
optimal solution to (5) exists (Frank & Wolfe, 1956),
because the problem (5) is a convex quadratic program
and the feasible region is not empty: the pair x
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��
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for the induction argument. Utilizing the optimality
principle, the induction assumption, and properties of

the arrival cost, for all ¹*N,
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where both minimizations are subject to the constraints
(3). Hence, the sequence ��K H
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as ¹PR. Lemma 3 guarantees the estimation error
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To prove stability, let �'0 and choose � '0 su$-
ciently small for ¹"N as speci"ed by Lemma 3. If we
choose �'0 such that ���(� , then we obtain the
following inequality for all ¹*N:
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Hence, if the initial estimation error ��x
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!x( ��
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��)�,

then the estimation error ��x( ��
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!A�x
�
��)� for all

¹*¹I "N as claimed. �

Remark 6. When inequality constraints are not included,
MHE is equivalent to the Kalman "lter. Proposition 5,
therefore, establishes that the Kalman "lter is stable
under the stated conditions.
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Fig. 2. A diagram of the smoothing strategy for passing information forward in time.

Fig. 1. A diagram of the "lter update strategy for passing information
forward in time.

We may also formulate the constrained steady-state
MHE where the objective function is now de"ned as

�K �
�
(z,�w

�
�) :"

��

�

�����

v�
�
R��v

�
#w�

�
Q��w

�

#(z!x(
��


)����
�
(z!x(

��

)#�K H

��

.

For ¹)N, we choose �K �
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�
( ) ) with �

�
"�

�
.

Demonstrating the stability of steady-state MHE is im-
mediate. In Proposition 5, we proved stability for all
�

�
'0. If we choose�

�
"�

�
, then�

�
"�

�
for all¹.

We state this result as the following corollary to Proposi-
tion 5.

Corollary 7. Suppose the matrices Q and R are positive
dexnite, (C,A) is observable, (A,GQ����) is controllable,
assumption I holds, and N*n. Then the constrained
steady-state moving horizon estimator is an asymptotically
stable observer for the system.

5. Smoothing update

In our development of the MHE, we use a "lter update
to summarize the past information.With the "lter update
we transfer the prior information to current estimate
window by conditioning the estimates at time ¹ using

x(
��


. The conditioning is the result of the approximate
arrival cost

(x
��


!x(
��


)����
��


(x
��


!x(
��


)

achieving its minimum at x(
��


. A schematic of the "lter
update strategy is shown in Fig. 1.
Rather than conditioning the estimate at time ¹ on

x(
��


, we may also condition the estimate on x(
��
����

.
With the "lter update, we ignore the in#uence of the data
�y

�
����
��


on our knowledge of x
��


. A diagram of the
smoothing update strategy is shown in Fig. 2. This prob-
lem was "rst studied by Findeisen (1997).
For unconstrained systems, we have an algebraic ex-

pression for the `smootheda arrival cost.

Lemma 8. Suppose the matrix �
�����

is positive dexnite.
Then, we have for j(¹

(z!x(
�����

)����
�����

(z!x(
�����

)#�H
�

" min
�� ��	�

����
���

��
�
(x

�
,�w

�
�) :x( j; x

�
,�w

�
�"z�, (7)

where

�
���

"�
���

#�
���

A�
�
���

�����

�(�
�����

!�
�����

)���
�����

A
�
�

���
,

�
���

"�
�
!�

�
C�(R#C�

�
C�)��C�

�
(8)

and �
�����

:"�
�
.

Proof. This equality follows from the smoothing results
for linear discrete-time system (cf. Rauch et al., 1965;
Bryson & Ho, 1975). �

We formulate MHE with the smoothing update by
using the objective function

�K
�
(z,�w

�
�)"

���
�

����
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�
Q��w

�
#v�

�
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,
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where

�
��


(z)"(z!x(
��
����

)����
��
����

(z!x(
��
����

)

! (Y
��
�

!O

��
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!O
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���
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)

and

Y
��
�

:"[y�
��


, y�
��
��

, 2, y�
���

]�.

Expressions for O

��

and =

��

are given in
Appendix B.
To prove stability, it su$ces in light of Proposition

5 to demonstrate that �
�
( ) ) satis"es the inequality in

Lemma 4.

Lemma 9. Suppose the matrix �
��
����

is positive dex-
nite. Then, for all p3R

�
and j(¹

�
�
(p)#�K H

�
) min

���	�
����
����


��K
�
(z,�w

�
�) : (N;z,�w

�
�)"p�,

:"�K
�
(p).

where the minimization is subject to the constraints (3).

Proof. The proof is available in the Appendix C. �

Corollary 10. Suppose the matrices Q,R,�
�
, and

�
��
����

for all ¹*N are positive dexnite, (C,A) is
observable, assumption I holds, N*n. Then the con-
strained moving horizon estimator with a smoothing update
is an asymptotically stable observer for the system (6).

6. Conclusion

We have demonstrated that moving horizon estima-
tion (MHE) is a practical strategy for constrained state
estimation. Three separate formulations were presented.
The key result of this work is that if the full information
estimator is stable, thenMHE is also stable provided one
does not introduce extra bias with the prior information.
To characterize this condition, we analyzed the estima-
tion problem using forward dynamic programming and
the notion of arrival cost.
We believe one of the strengths of moving horizon

estimation is that the cost function is designed to address
the practical engineering tradeo! between following the
model forecast and tracking the measurement. The nov-
elty is that MHE allows further information to be in-
cluded in the estimator in the form of constraints, which
may provide a useful design feature that practitioners can
exploit. Nominal estimator stability, although not a pri-

mary design goal, is guaranteed automatically by proper
choice of arrival cost approximation and system observ-
ability. This fact leaves the designer free to adjust the
tuning parameters to achieve other objectives such as
rapid state reconstruction, low sensitivity to sensor noise,
optimality for various assumed probability distribu-
tions, and robustness to various types of model error.
These properties should make MHE useful to practicing
engineers.
The strength and weakness of MHE is the use of

quadratic programming. For reasonable models, the op-
timization problems can be solved in less than 1 s on
desktop computers using standard software. However,
for some problems this performance is insu$cient. With
the increasing power of computers and the ability to
solve quadratic programs in polynomial time, MHE will
become an alternative for an expanding class of estima-
tion problems in the near future.
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Appendix A. Proof of Lemma 4

Before proving Lemma 4, we "rst establish the follow-
ing lemma concerning general quadratic programs.

Lemma 11. Let �(z)"z�Qz where the matrix Q is
symmetric positive dexnite and the sets � and � are
closed and convex with �-�. If a solution exists to
the following quadratic programs �(z( )"min

�
�
�(z),

and �(z
 )"min
�
�

�(z), then �(z
 )*�(z( )#�(�z) where
�z"z
 !z( .

Proof. Substituting in for z
 , we obtain

�(z
 )"�(z(#�z)

"�(z( )#�
�(z( ),�z�#�(�z).
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�A proof by contradiction is immediate*assume there exists a z in
� that violates the above condition and consider a convex combination
between z and z( , which lies in �, and calculate cost; it decreases from
�(z( ) along the line, contradicting optimality. In other words,
!
�(z( )3¹� (z( ) where ¹� (z( ) denotes the normal cone to � at z( :

¹� (z( )"�z:�z�!z( , z�)0, ∀z�3��.

=

��
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R 0 0 2 0
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0 CA�
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Optimality implies �
�(z( ), z!z( �*0 for every z3�.�
This inequality implies �(z
 )*�(z( )#�(�z) as claimed. �

Proof (¸emma 4). Without loss of generality, we take
x(
��


"0. Consider an arbitrary p3R
�
. Let
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where the minimization is subject to the constraints (3). If
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then, by Lemma 11, we have
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. We obtain, therefore, the following

inequality:
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and the lemma follows as claimed. �

Appendix B. Formulae for smoothing covariance

For notational simplicity, we make the following
identities:

O
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:"[C� A�C�2A�
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y
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2

y
���

�
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Appendix C. Proof of Lemma 9

Proof. In light of Lemma 4, it su$ces to demonstrate
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From Lemma 8, we have the following equality:
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Evaluating the minimization analytically, we obtain
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A standard dynamic programming decomposition leads
to the following reformulation:
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and the lemma follows as claimed. �
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